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Introduction 
A complication of filling simulation is the need to not only test the permeability of the reinforcement 

in various directions, but also at various levels of compaction, to determine the relationship between 
permeability (K) and fiber content (vF) for a reinforcement. This type of testing is required for process 
simulation under a flexible cover, as well as when the part geometry dictates non-uniform thicknesses. 
Traditionally, such a model is developed by repeating in-plane permeability tests at different thicknesses 
with samples having the same number of layers and dimensions. This can be quite tedious and relies on 
interpolation and sometimes extrapolation to predict the permeability at fiber contents that were not 
experimentally determined. This study presents a novel method to rapidly determine a continuous 
function of K(vF) in a single flow experiment. A sample is infused under a vacuum bag with a speckle 
paint pattern applied to the bag, while the sample's thickness gradient is continuously monitored across 
the bag surface using digital image correlation (DIC). The position of the flow front is sampled at various 
times similar to any traditional unsaturated permeability test. The resulting length-versus-time data is 
input along with the wet compressibility of the fabric (the relationship between compaction pressure and 
vF) into a 1D flow model accounting for the variable thickness from the vacuum bag. This model is 
based on the work of Modi [1], and has been traditionally used to predict the filling time given K(vF) 
and compressibility functions. But in this case, the permeability, K, is fitted to the length-versus-time 
data and compressibility model. The K(vF) function used is a power law, K=A(vF)B; fitting the model 
thus entails iterating constants A and B. 

Other published methods have produced the same continuous K models with plunger type tooling 
to change the sample thickness periodically during the flow experiment [2]. It is thought that the method 
presented here relies on simpler tooling, has less risk of plunger-seal leaking, and may require less test 
time as no tooling changes are required during the test. 

Results 
Three types of fabric reinforcements were evaluated: 1) a fiberglass unbalanced weave (JB Martin 

TG-15-N (518 g/m2) with PPG rovings), 2) a carbon +45/-45 biaxial non-crimped fabric (NCF) 
(VectorPly C-BX 1800 (580 g/m2)), and 3) a plain glass weave (805 g/m2). Samples were made of four 
plies of each fabric, cut to 400 x 250 mm. Transducers were placed at 20, 40, 60, 80, 100, and 200 mm 
along the flow path through the long direction of the fabric sample. Both the transducers and the DIC 
cameras sampled the resin pressure and sample thickness at a frequency of 0.5 Hz during infusion. 
Infusions were carried out under a vacuum bag with an atmospheric pressure of ~86 kPa and vacuum 
pressure ranging from 1 to 15 kPa (absolute). The bag was coated with speckle paint for DIC evaluation, 
except for a thin strip down the infusion length with which to measure the time to fill (t) given flow 
lengths (L) at 20 mm increments. Local vF was calculated from the thickness supplied by DIC data, and 
the local compaction pressure on the fabric (PC) was calculated from Terzaghi’s balance given the resin 
pressure from the transducer data. The resulting fabric wet compressibility, PC(vF), was fit to the Loos-
Grimsley model [3] for at each transducer location. Fits for all six transducers are shown in Figure 1 for 
an example carbon NCF infusion. 

The 1D compressibility model was setup in matlab, to iterate A and B for the power law of K(vF), 
given the calculated compressibility PC(vF), to match the L vs t data. Figure 2 shows the power law 
function fits for each of three test infusions with the plain weave glass. The average fit (with power law 
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shown on the graph) was determined by averaging periodic K values along the 3 curves. Figure 2 also 
shows an example goodness of fit, with both the experimental and fit profiles for L vs t. 

 

 

Figure 1: Example compressibility data and model fits for each of the six transducer locations. 

 

Figure 2: Left: fit permeability function K(vF) for each of three infusions with plain weave glass, and average fit (black 
dashed line). Right: example goodness of fit for L vs t. 

The average fits for warp and weft directions for the glass unbalanced weave are presented in Figure 
3, along with comparison data from both 1D traditional K tests, and calculated from Pcap measurement 
dip tests. The agreement is fairly good, or at least usually within the standard deviation of each other.  

 

 

Figure 3: Average fit of K(vF) for glass unbalanced weave (blue: warp, orange: weft), with 1D permeability test (circles) and 
Pcap test (triangles) results. 
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